University of Mumbai

Civil Engineering Examination

Sub:CEC702/ Theory of Reinforced Concrete Structures

Year/Sem:- BE/ VII Sem

Max. Marks: 80

Duration: - 2Hrs

Q1. Attempt all the MCQS

(20 X 2 mark= 40 marks)

- 1. An RCC beam can have maximum tension reinforcement as:
 - a. 6 % bD
 - b. 2 % bD
 - c. 3 % bD
 - d. 4 % bD
- 2. The maximum depth of neutral axis for a beam with Fe 415 bars in limit state method of design
 - a. 0.46 d
 - b. 0.48 d
 - c. 0.50 d d
 - d. 0.53 d
- 3. The partial factor of safety for concrete is
 - a. 1.15
 - b. 1.5
 - c. 1.95
 - d. 2.0
- 4. The characteristic strength of concrete in the actual structure is taken as
 - a. **fck**
 - b. 0.85 *fck*
 - c. 0.67 *fck*
 - d. 0.447 *fc*k
- 5. Factor of safety is the ratio of _____.
 - a. Yield stress to working stress.
 - b. Tensile stress to working stress.
 - c. Compressive stress to working stress.
 - d. Bearing stress to working stress
- 6. The minimum percentage of shear reinforcement in R.C.C beams is
 - a. 0.85/fy
 - b. **0**. **4**
 - c. 4

d. 40Sv/ 0.87 fy d

- 7. Spacing of stirrups in a rectangular beam, is
 - a. Kept constant throughout the length
 - b. Decreased towards the center of the beam
 - c. Increased at the ends
 - d. Increased at the centre of the beam

- 8. The limit of percentage of longitudinal reinforcement in a column is given by
 - a. 0.15 2%
 - b. 0.8 4%
 - c. 0.8 6%
 - d. 0.8 8%
- 9. Usually the thickness of floor slabs for buildings is not less than
 - a. 90 mm
 - b. 110 mm
 - c. 115 mm
 - d. 120mm
- 10. The diameter of transverse reinforcement of columns should be equal to one fourth of the diameter of the main steel rods but not less than
 - a. 4mm
 - b. 5mm
 - c. 6mm
 - d. 7mm
- 11. In case of a T-beam, the position of neutral axis
 - a. Always lies somewhere in the web area
 - b. Always lies somewhere in the flange area
 - c. Is always outside the cross-sectional area

d. May be anywhere in the cross-section

- 12. A column is a structural member designed primarily to take
 - a. Torsional load
 - b. Tensile load
 - c. Compressive load
 - d. Shear
- 13. Load Carrying capacity of column is increased by percent when helical reinforcement is provided as a transverse reinforcement
 - a. 5%
 - b. 4%
 - c. 6%
 - d. 0.05%

14. Footing is that portion of a foundation which transfers the load to the.

- a. column
- b. Slab
- c. Beam
- d. Soil

15. A footing which supports two or more columns is termed as

a. Combined footings

- b. Raft footing
- c. Strap footing

d. Continuous footing

16. The weight of footings is assumed as of the weight transferred to the column.

a. 5%

b. 10%

c.15%

d. 20%

17. The depth of a square footing should not be less than .

a. 90 mm b. 100 mm **c.150 mm** d. 120 mm

18. Area of footing is calculated as

- **a. Total load / SBC**b. Total load x SBCc. Total load SBC
- d. total + SBC

19. In case of footing, minimum nominal cover should be

a. 50 mm

b. 25 mm

 $c.10 \ mm$

d. 20 mm

20. Strap footing is provided in case of

a. Exterior columns

b. Interior column

c. For aesthetics purpose

d. Pile foundation

Q2. Attempt any TWO

- 1. Calculate ultimate moment of resistance for RCC section 230 mm x 550 mm. deep overall and reinforced with 3–16 dia. Grade of steel Fe415 & grade of concrete M20.Take effective cover 30 mm. Use LSM
- 2. Determine reinforcement required on tension & compression side. The effective span of beam is 4.5m. if superimposed load is 40 KN/m and size is limited to 300mmx500mm overall, d'=50mm, use M20& Fe415. Use WSM
- 3. A beam 250mm x 550mm effective is subjected to a factored BM of 230 KNm. Determine area of steel required. Use M20 & Fe500.Assme d'=50mm Use LSM.

Q3. Attempt any TWO

(02 X 10 marks= 20 marks)

- Design a slab to cover a room of internal size 4m× 5m and 23 cm thick brick wall around. Assuming a superimposed load of 3.5 kN/m² & floor finish of 1 kN/m² design the slab use M-20 grade of concrete & HYSD steel of grade Fe 415.Assum that slab corners are prevented from lifting. Draw neat sketch of reinforcement.
- 2. Design circular column of dia 400 mm subjected to a load of 1100 KN, the column is having spiral reinforcement. The column is 3 m long and is effectively held in position at both ends but not restrained against rotation. Use M25 & Fe 415.
- 3. Design the Shear reinforcement for the rectangular beam of size 300mm x 500mm effective provided with 4-20 mm dia. In tension zone . the beam is subjected to UDL of 45 KN/m. over the span of 7 m. use M20 & Fe 415.